
Inl. J. Heat Mars Tratzsfer. Vol. 5, pp. 339-348. Pergamon Press 1962. Printed in Great Britain. 

AN APPROXIMATE TREATMENT OF A HEAT CONDUCTION 

PROBLEM INVOLVING A TWO-DIMENSIONAL 

SOLIDIFICATION FRONT 

G. POOTS 

Department of Theoretical Mechanics, University of Bristol 

(Receiued 11 September 1961) 

Abstract-The approximate integral-methods of boundary layer theory in fluid dynamics are used 
to obtain information on a heat conduction problem involving a moving two-dimensional solidifi- 
cation front. The example treated is the inward solidification of a uniform prism having square cross- 
section and filled with liquid initially at the fusion temperature. The results obtained for the location 
and time history of the front are in good agreement with those found by Allen and Severn [l] using 

the relaxation method. 

1. JNTRODUCTION 

THE problem discussed in this paper is that of the 
inward solidification of a liquid, initially at 
fusion temperature, contained in a uniform prism 
of square cross-section whose surface is main- 
tained at a constant temperature below the 
fusion temperature of the liquid. The location 
and time history of the moving two-dimensional 
solidification front has been found, for a 
particular liquid, by Allen and Severn [l] using 
the relaxation method. 

This problem has as yet proved intractable by 
exact analysis and it is the purpose of the present 
paper to give an approximate treatment, which 
is based on the approximate integral-methods for 
solving the boundary layer equations in fluid 
dynamics. These methods, namely the Karman- 
Pohlhausen method [2] and the Tani method [3], 
reduce the mathematical problem of finding the 
two-dimensional front to the numerical integra- 
tion of an ordinary first-order differential equa- 
tion. Similar techniques have been applied in [4] 
to various problems involving one-dimensional 
solidification fronts. In a previous paper by 
Goodman [5] the Karman-Pohlhausen method 
has been used to discuss the solidification of a 
semi-infinite region of fluid. 

previous assumptions the equations 
the inward solidification process are: 

k(;$+$)=;, 

subject to the boundary conditions: 

T = To on C,(x, JJ) = 0 for t > 0, 

T = TF on C&X, y, t) = 0, 

and at 

describing 

(2.1) 

(2. la) 

t = 0, T = TF and CF = C,, = 0. (2.lb) 

In (2.1) k denotes the thermal diffusivity. A 
2. THE EQUATIONS OF THE PROBLEM further condition at the solid-liquid interface is 

In the following discussion the liquid is required to determine the location and time 
assumed to satisfy the conditions: (i) the liquid history of the solidification front. Let I’(&, C,) 

has a definite fusion temperature, (ii) initially the 
liquid is at fusion temperature and (iii) all 
thermal properties of the material are uniform 
and constant. We consider a uniform prism of 
material having square cross-section and 
bounded by the isothermal surface 

C,(x, v) = (x” - aa) (y2 - a”) = 0 

at temperature To, where T,, < TF, the fusion 
temperature of the liquid. At any time during 
the period of inward solidification let the location 
of the two-dimensional solidification front be 
given by the surface CF (x, y, t) = 0, an iso- 
thermal on which T = TF. In accordance with the 
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be the volume of solidified material at time t per 
unit depth of boundary in the axial direction. 
Thus in time 6t the volume of solid increases 
by an amount SV(CF, C,) and there will be set 
free an amount of heat 

SQ = PL sv(cF, CO), cw 

where p is the density and L the latent heat of 
fusion of the material. This must escape by 
conduction through the solidified material such 
that the amount of heat that flows outward is 

SQ=-K (2.3) 

where K is the thermal conductivity and s is 
the distance measured along the contour 
C&x, y, t) = 0 in an anticlockwise direction. 
Thus in the limit as 6t becomes vanishingly small 

aT dV(G, Cd 
K -=:- PL---_Tit--, (2.4) 

ci+=o i3V 

where 

JJ 
c* =:o 

JJ 
co=0 V(G, Co) = dxdy = dS. (2.5) 

CR-0 Cp-0 

Introducing the dimensionless moduli : 

@= Y-q 
(TF - T,) ’ 

fj = ;ifx!&L), ’ 

I 

X-“, and Y--i, 

the above equations (2.1) and (2.4) may be 
written in the dimensionless form : 

aw aw ai3 
ax* + ay2 = a_r-; (2.7) 

0 = 0 on C&X, Y) 

=(X2- 1)(Y2- l)=Ofor7>0, 
1 

(2.7a) 

8 = 1 on G(X, Y, 7) = 0; J 

also 

cF=o 
(2.7b) 

where 

JJ 
Co-O 

U(CF, Co) = du. 
cF=0 

The initial condition is that at 

7=0, O-1 (2.7c) 

implying that solidification has not yet com- 
menced. 

3. APPROXIMATE ANALYSIS FOR 
EQUATIONS (2.7) 

In order to apply the KBrmrin-Pohlhausen 
method or the Tani method to obtain approxi- 
mate solutions of equations (2.7) we begin by 
assuming the shape or mathematical form of the 
solidification front, C&X, Y, 7) = 0. We note 
that when 

7=0, CF=Co=(X2- l)(YZ- 1) =o. 

Intuitively we can argue that for small time an 
interface contour will be in the shape of a square 
having rounded corners and must become 
circular, i.e. of the form X2 + Y2 - f (T) = 0, 
for times near the finish of the solidification 
period. Moreover at the end of the solidification 
period the solidification front lies on the axis 
of the prism, X -= Y = 0. It is thus reasonable to 
assume the following shape 

CF(X, Y, T) = (X2 - 1) (Y2 - 1) - 6(T) = 0, 
(3.1) 

where E is an unknown function of the time T. 
The initial condition (2.7~) is now replaced by 

E=O at 7=0, (3.2) 

and by virtue of (3.1) E = 1 at the instant of 
complete solidification of the prism. 

We now obtain certain integrals of the heat 
conduction equation (2.7) for the solidified 
phase. The heat balance integral, analogous to 
the momen~m integral in boundary layer 
theory, is derived by integrating both sides of 
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(2.7) over the solidified phase bounded by the 
contours C, = 0 and CF = 0. Applying Green’s 
theorem to the resulting equation and using 
boundary condition (2.7b) we obtain: 

Furthermore on using the divergence theorem 

div (OVO) = V’o . VQ + @VW, 

we obtain for the solidified phase 

div(OVO)=V@.V@+@g. 

On applying Green’s theorem and using the 
boundary conditions (2.7a) and (2.7b) we ob- 
tain a second integral, namely 

The two integrals (3.3) and (3.4), as in the 
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approximate methods of boundary layer theory, 
may now be used to find E. 

I.-The Kdrmcin-Pohlhawen method 
We assume for the solidified phase the one- 

parameter temperature distribution 

Q = (X2 - 1) (Y” - 1) 
f (3.5) E 

which satisfies, by virtue of expression (3.1), the 
boundary conditions (2.7a). On substituting 
expression (3.5) into the heat balance integral 
(3.3) there results a first order differential 
equation for C(T) to be solved subject to the 
boundary condition (3.2). On solving we obtain 

7 = S: W&(~) + ME)) de, (3.6) 

where 

A 0 = _ dl, 
‘de (3.7) 

Table 1 

-___ 

f A0 A, A, ‘4, A, Bo B, & 

OGO 04OOOOO 04OOOOO OGOOOOO OGOOOOO 04OOOOO 2.666667 5.333333 3.555556 
004 0.060322 0.012226 0.015893 0+-)47067 0.024866 2.625886 5.224356 3.473722 
0.08 0.107342 0.02193 1 0.028433 0.084094 OGl.4463 2.583899 5.111826 3.389078 
0.12 0.149558 0.030715 0.039754 0.117474 0.062084 2.540902 4.996325 3.302086 
0.16 0.188741 0.038914 0~050300 0.148541 0.078471 2.4969935 4.878149 3.212981 
0.20 0.225720, 0.046685 0.060282 0.177925 0.093964 2.4522405 4.757497, 3.121924 
0.24 0.260979 0.054122 0.069822, 0.205991 0.108756 2.406694 4.634522 3.029034 
0.28 0.294833 0.061284 0~079001 0.232979 0.122976 2.360394 4.509341 2.934407 
0.32 0.327503 0.068213 0.087874 0.259057 0.136713 2.313373 4.382054 2.838121 
0.36 0.359154, 0.074943 0.096483 0.284350 0.150034 2.265660 4.252744, 2.740242 
040 0.389913, 0.081496 0.104861 0.308955 0.162989 2.217280 4.121485 2640828 
044 0.419880 0.087893 0.113033 0.332948 0.175620 2.168253 3.988339 2.539929 
0.48 0449136 0.094149 0.121021 0.356391 0.187959 2.118599 3.853363 2.437591 
0.52 0.477748 0.100276 0.128840 0.379336 0.200034 2.0683355 3.716608 2.333854 
0.56 0.505772 0.106287 0.136507 0401825 0.211868 2.017477, 3.578121 2.228754 
060 0.533256 0.112190 0.144032 0.423896 0.223479 1.966039 3.437943 2.122325, 
0.64 0.560241 0.117994 0.151427 0445579 0.234885, 1.914034 3.296113 2.014598 
0.68 0.586764 0.123705 0.158701 0.466903 0.246101 1.861474 3.152667 1905601 
0.72 0.612855 0.129329 0.165861 0.487890, 0.257139 1.808370 3+)07637, 1.795360 
0.76 0.638542 0.134872 0.172916 0.508564 0.268011 1.754733 2.861056 1.683899 
0.80 0.663849, 0.140339 0.179871 0.528942 0.278726 1.700573 2.712952 1.577242 
0.84 0.688800 0.145734 0.186732 0.549042 0.289293 1645898 2.563351 1.457410 
0.88 0.713413 0.151061 0.193505 0.568878 0.299721 1.590718 2.412280 1.342423 
0.92 0.737706 0.156323 0.200193 0.588465 0~310017 1.535040 2.259762 1.226300 
0.96 0.761696, 0.161524 0.206801 0607814, 0.320188 1.478872 2.105820 1.109059 
la0 0.785398 0.166667 0.213333 0.626939 0.330239 1.422222 1.950476 0.990718 
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and 

Defining 

the required integrals 

I1 2’rj-‘)(2 - 2X2 + C) R1’2 dX 
0 

(3.8) 

(3.9) 

(3.10) 

are not of the elementary type but can be 
readily expressed in terms of the standard 
elliptic functions of the first and second kinds 
(see Appendix A). 

In Table 1 the functions A,( E) and A,(E) are 
tabulated correct to six decimal places at 
E = 0*00(0*04) 1.00. Thus using expressions (3.1) 
and (3.6) information on the complete or partial 
solidification of a prism of any specified liquid 
may now be obtained. Results for a particular 
liquid are discussed later. 

II-The Tani method 
This method is a refinement of the Karman- 

Pohlhausen method. We assume the two- 
parameter temperature distribution 

@ _ cx2 .- l) ( y2 - l) (1 - g) 

E 1 
11 (3.11) +g 

( 

(X2- 1)(Y2- 1) 2 
> E 

which satisfies the boundary conditions (2.7a). 
The unknown parameters E and g are then 
determined using the heat balance integral (3.3) 
and the second integral (3.4). 

On substituting expression (3.11) into equa- 
tions (3.3) and (3.4) we obtain, after some 
elementary algebra, the following equations for 
C(T) and g(T): 

dr dg (1 - g) -- = a, - a,g + a2E - 
dc dr ’ 

(3.12) 

(Jo + J1g + J2g2b 2 1 

(3.13) 

= H, + H,g + &g2 + H,g3. 

Here 

JO = a2co - boy J1 = a26 + 6, + b,, 1 

J2 = a,c, - b,, Ho = do - a,c,, I 

H, = d1 - do - aOcl + a,c,, 

i 

(3.14) 

H2 = d2 - d1 - aOc2 + alcl and 

H3 = a,c, - d,; i 

also 

a0 = MAO + A,, a, = A, - A,, 

a2 = A, - &A,, b, = +A, - &AS, 
1 

b, = g-42 - %A, + WI, co = B,,, 

c1 = B, - 2B,, c2 = B, - B, + Bz. 
i 

(3.15) 

do = /3A, + +A2, d1 = A, - #A, and I 

d2 = %A, - A, + A,. 1 

The functions A,( l ) and A,( l ) have been defined 
by expressions (3.7) and (3.8) respectively. The 
remaining functions A, and B, (see Table 1) are 
defined as follows: 

Bl = & i3g;3) 1 
and I 

32 
B2 = 3(105)2 

In Appendix A expressions, in terms of the 
standard elliptic functions, are obtained for the 
following integrals: 



AN APPROXIMATE TREATMENT OF A HEAT CONDUCTION PROBLEM 343 

? 
1, = y’“Jf)(X2 - 1)s (3R2 - 1OR 

0 

+ 1 5)R”la dX , 

1, = dty(x2 - 1)s (5R3 - 21R2 
0 

i_ 35R - 35)R1’2 dX, 

1, = ‘(1fc’(X2 - 1)4 (35R4 - 180RS 

_t 3078R2 - 420R + 315)R”2 dX, 
l (3.17) 

so ziz gd(y ‘)(X2 - 1)2 R3/2 d X, 
0 

& - ;‘(‘f’)(X2- Q3t3R2- 5)R3’2dX, 
0 

and I 

s, = 3 “‘J+(X~ - 1)4(15R2 - 42R 
0 

+ 35)R3j2 d X. ! 

Now for the solidified phase the energy 
thickness O*, related to the total thermal energy, 
is defined as 

ss 

c,=o 
@* = 0 da. (3.18) 

c,=o 

On using expression (3.11) we obtain 

o* = +s (1 - g)A, + J$ gA, 

and from (B.l) it follows that 

@-(1 -fS)‘Iog-$ (3.19) 

for small E. Hence the first order differential 
equations (3.12) and (3.13) are to be solved 
subject to the boundary conditions 

T = 0 at E = 0 and lim gc log -$ = 0. (3.20) 
f-+0 

The latter condition is derived from (3.19) since 
o* -+ 0 as E + 0. 

In Appendix B the behaviour of g is investi- 
gated when E is small. Specifically we find that 
for 0 < E < 0.04 the function g is represented by 
the series expansion : 

m m 

&?= cc (3.21) 

p-0 q=o 

Equations are given in Appendix B from which 
the g*$ (i coefficients may be evaluated. Although 
the function g is finite and non-zero at the 
origin, the derivative dg/dc is singular and 
behaves as l/[ E log2 (4/1/c)] as t: -+ 0. Thus the 
differential equation (3.13) subject to (3.20) 
cannot be integrated numerically from the 
origin outwards using a finite difference step-by- 
step method. Briefly the procedure adopted is as 
follows. For a specified /3 the function g is 
evaluated for 0 .< E < 0.04 from expression 
(3.21). At E = 0.04 the functions g and g’ are 
now known and we can proceed to evaluate g at 
0,08(0.~) l-0, using the method of Fox and 
Goodwin [6]. 

Once g is known, T(C) may be found (3.12) at 
t: = OW(O.04) l*OO by direct numerical integra- 
tion. Thus 

7 = - l azlog(1 -8) 

+ (a2 + a3) IOg (1 - g) + f;Eaf) dE 

’ (3.22) 
where 

da2 a3 = E - = - a,, 
de 

a result which can be verified using the informa- 
tion given in Appendix A. 

4. RESULTS AND DISCUSSION 

In Table 2 quantitative results are given, as in 
Ref. 1, for /!I = 1.5613 evaluated using the 
K~rm~n-Po~au~n and Tani method. The 
dimensionless time T taken for the solidification 
front to pass through the points X = %I(1 - E), 
Y = 0 or the points X = Y = 2/(1 - 2/c) can 
then be deduced. These results are given graphic- 
ally in Figs. 1 and 2 respectively together with 
the ~orrespondin8 results obtained from the 
relaxation diagram of Allen and Severn [l]. In 
Figs. 1 and 2 we note that the Kirman-Pohl- 
hausen one-parameter method and the Tani 
two-parameter method are in close agreement 
for depths of solidification corresponding to 
E < 4, but for E N 1 the agreement between the 
two methods is not as good. Obviously the 
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Table 2 

.~ ~~ 

Uniform prism: Square cross-section 

Approx. 1 Approx. II 

E X= (1 - +2, y: 0 Xz y= (1 - .i?)1’2 r T g 

0.00 10Xl 
0.04 0.980 
0.08 0.959 
0.12 0,938 
0.16 0.920 
0.20 0.894 
0.24 0.872 
0.28 0,849 
0.32 0,825 
0.36 0.800 
040 0.775 
0.44 0,748 
0.48 0,721 
0.52 0.693 
0.56 0.663 
0.60 0.632 
0.64 0.600 
0.68 0.566 
0.72 0.529 
0.76 0.490 
0.80 0.447 
0.84 0.400 
0.88 0,346 
0.92 0,283 
0.96 0.200 
1.00 OGOO 

1NM.l 04000 0400, 
0.894 oGO1o 04009 
0.847 oQO37 oJ1034 
0.809 0.0077 0 007, 
0.775 0.0131 0,012, 
0.744 0.0197 0.018, 
0,714 0.0274 0,026, 
0,686 0.0362 0,035, 
0,659 0.046 1 0,045, 
0,632 0.0570 0.057, 
0,607 0.0689 0.070, 
0.581 0.0818 0.085, 
0.554 0.0956 0.101, 
0.528 0.1103 0. I 19, 
0.502 0.1260 0.138, 
0.474 0.1425 0.159, 
0.447 0.1599 0.182, 
0.418 0.1782 0.208, 
0,389 0.1973 0.235; 
0.358 0.2172 0,265, 
0.326 0.2380 0.299, 
0,283 0.2596 0.335, 
0,249 0.2819 0.375, 
0,202 0.3051 0.419, 
0.141 0.3290 0.468, 
0.000 0.3536 0.524, 

-0.087, 
-0.083, 
-0.068, 
-0.051, 
-0.035, 
-0.017, 
t oaoqi 

0,019, 
0,038, 
0.058, 
0,079, 
0.100, 
0.123, 
0.146, 
0. I 70, 
0,195, 
0.221, 
0.248, 
0.276, 
0,305, 
0.336, 
0,369,, 
0,402, 
0.438, 
0.476, 
0.516, 

FIG. 1. Location and time history of the solidification front for a prism having square 
cross-section, when X = t/(1 - E), Y = 0 and p = 1.5613: I-K&man-Pohlhausen 

method, II-Tani method and III-Allen and Sevem [l]. 
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FIG. 2. Location and time history of the solidification front for a prism having square 
cross-section, when X = Y = x/(1 - 4~) and fi = 1.5613: I-K~rrn~n-Pohlhau~n 

method, II-Tani method and III-Allen and Severn [l]. 

Tan&method will be the most accurate for E * 1. 
The non-dimensional time taken for the com- 
plete solidification of the prism calculated using 
the KBrmSm-Pohlhausen and Tani methods is 
T = Q-35, and 0.52, respectively, to be compared 
with the result of the relaxation solution 
7 = 060. Thus the Tani-method should be 
sufficient for all practical purposes, being in 
error by at most 13 per cent in the present 
calculation. If information is required for small 
depths of solidification the simple KArmBn- 
Pohlhausen method should be sufficient. 
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APPENDIX A 

The integrals 1, and S, can be expressed in 
terms of the complete elliptic integrals of the 
first and second kinds. In the usual notation 
(see Bowman [7] these integrals are defined by: 

s 1 
K’= 

dt _.---._ - () d(l - P) d(l - k’V) 1 
’ 641) 

and E’= .__ J 2/u 1-y dt 
0 4 - @) 

respectively. The complementary modulus k’ is 
given by: 

k’2 = 1 - k2 @2a) 

These integrals have been calculated by Milne- 
Thomson [8] and in this reference a different 
notation for the modulus is adopted, namely 

m, z k’s = 1 - m = 1 - k2. @2b) 

Consider first the evaluation of the integral 
(3.9), i.e. 

I,(E) = ‘(;;” R”‘sdX, 7 

0 
643) 

where R(X; c> = 

Introducing the new variable 

t = (X/l/m,), ml = 1 - E, 
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the integral (A3) can, on rearrangement, be 
expressed in the form 

is 1 

I, = ml 
dt 7 

o 141 - mlt2) 1.41 - t2) 
1 

J -- 

t2 dt 
(A4) 

- 
0 141 - md2) 141 - t”>,I 

Since 

J 
1 t2 dt ____~_._ = _L (K’ - E’), 
o 2/(1 - m,t2) (1 - t2) m, 

then 

I, = E’ + K’(m, - 1) = E’ - l K’. (A5) 
On using the rules for differentiating E’ and K’ 
we obtain 

A, = +EK’. (‘46) 

The remaining integrals I, and S, are evaluated 
using the recurrence relationship 

d( dv 
sp+l cd) = (p + 1) s” - (p + 2) (1 + /Y2)#‘+Z 

+ (p + 3)k’” ~1’+~ 

where p is an even integer and s, c and d denote 
the Jacobian elliptic functions snv, cnv and dnv 
respectively. We obtain after some algebra. that 

31, = (4 + <)E’ - ~(2 + 3<)K’, 

1, = (64 + 16~ + 9c2)E’ 
- ~(32 + 12~ + 45G)K’, 

351, = (256 + 646 + 36~~ + 25c3)E’ 
- ~(128 + 48~ + 30~~ 
+ 175 c3)K’, 

3151, = (16 384 + 4096~ + 2304~~ 
+ 1600~” + 1225c4)E’ 
- ~(8192 + 3072~ + 1920~~ 
+ 1400~~ + 11 025c4)K’, 

3S, = (8 - 13~ + 3c2)E’ 
- 2~(3 - E)K’, 

15S, = (32 + 8r - 83r2 + 25c3)E’ 
- ~(16 + 6~ - 40r2)K’, 

and 

105S2 = (1024 + 2566 + 144~~ 
- 3575~~ + 1225e4)E’ 
- ~(512 + 192~ + 120~2 
- 1750c3)K’. 

(A7) 

The functions A,(E) and B,(E) [see definitions 
(3.7), (3.8) and (3.16)] can now be evaluated 
numerically from (A6) and (A7) with the aid of 
the Mime-Thomson tables. These have been 
given for convenience in Table 1. 

APPENDIX B 

It is the purpose of this appendix to establish 
the behaviour of the function g, satisfying (3.13) 
and (3.20), when E is small. Using the known 
expansions for K’ and E’ (see Bowman [7]) we 
obtain, on using expressions (A6) and (A7), the 
following expansions valid for small E: 

j-C” 21 
A,, = - \m8 + 256 c3. . . 

log -+ ) 
E 

A, 
3 5 

= E - ~2 . i28 384 . . 

+ 32 
I 3 l i 64 1 E2 4 . . . i 

log & ) 

A, 
1 21 

= 6 - c2 . 48 1o24 . . 

. 1 log 4.. 
E’ 

i3 3 1 4 + i,8 6 + 4. c2. . ‘I log -& , 
(Bl) 
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and 

Bz =={~A...} 

(Bl) L, = - 500 + 444~ - (6756 033) 
+ 188)G . . . , 

MO = - (72OOj3 + 3000) + 7806 
+ (313 - 563/I)G.. . , 

Ml = - 425 + (1800/3 + 684) c: 
+ (7318 - 233)~~. . . , 

IV,, = - (2400/3 + 1920) + (300/I + 583) 
- (1136 - 166)G.. . , 

Nl = - 162 + (~~ + 721)~ 
+ (169/I - 134)~~. . . , 

R,, = - 280 + 80~ + 35~~. . , , 
and * 

+{-;E?..)log-$. J 

On substitution of expressions (Bl) into (3.15) 
we may then derive, on using (3.14), correspond- 
ing expansions for the functions J, and I&.. A 
careful examination of these expansions leads to 
the conclusion that if the .I, and H, are to be 
evaluated correct to five decimals for 
0 < 6 < 0.04 then terms of 0[ E3 loga (4/2/ l )] may 
be neglected. Thus on substitution of the J,. and 
H, expressions so obtained into the differential 
equation (3.13) and multiplying, for con- 
venience, both sides of this equation by 
(14~)~(log 4/1/c) we obtain for 0 < c < 0.04 
the following simplified equation for g: 

RI = 20 + 55r - 36~~. , 

Note that in (B.3) most of the numerical co- 
efficients are exact. 

Ll 
Lo+ jog4,+ MO + 

Ml Nl 
= log 4/2/c 

No + log4,d/E (B2) 

The initial boundary condition is 
The differential equation (B2) is satisfied by an 

Iim Eg log L= 0. 
expansion of the form 

r+O de 02 00 

The polynomial expressions U. and VI and 
etc., wherein the coefficients have been evaluated 

g = 
(B4) 

to the nearest whole number, are: 
p=o q=o 

U. =600-390~--888c2..., 1 
On substitution of (B4) into (B2) there results a 
set of simultaneous equations in the coefficient 

U, =325-224~+40~~..., 

V. =840- 180~-696~..., 

VI =269-2216~+27~~..., 

Wo=160-130~-31~2..., 

w; =;73-776$-13E2..., 

Lo = - 1200 + (27~~ + 1200)~. 

+ (6758 + 281)~~ . . . , 

g 1), *. The dominant coefficients may be evaluated 
from the following: 

%, o + WV + Wg,“, o + WV 

+ 75k,, i, + 30 = 0, (B5) 

(3600 + 7200/? + 2(2400/3 + 234O)g,, o 

z (B3) + 1000&C ok, 1 

= 27~~ + 1200 + 78Og,, o 

+ (3OOFI -!- 5831gk o + 80& 0, (B6) 
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(3000 + 7200/3 + 2(2400/I = - 425g,, 0 - (2400/I + 192O)g;, o 

+ 192O)go, 0 - 84Ogi. 01 g1. 0 - =%o, ogl, o f 60& ogl, o 

- 840 go. o g;. o. (B8) 
z - 500 - 425g,, ” - 162& o + 20& o, 

(B7) 
Equations for deriving the coefficients g,, 2, 
go, 3, g,, 1, g,, 2 and g,, 1 are not given as these 
are readily obtained. We note that for p > 0 the 

and cubic equation (B5) has three real negative 

(3000 + 72008 + 2(2400/3 
roots and we accept the smallest negative root 
since the other two are unacceptable on physical 

+ 192O)go, 0 - 84OgZ. 01 gz, o considerations. 

Resume-Les methodes integrales approchees de la theorie de la couche limite en dynamique des 
fluides sont utilisees pour Ctudier un probltme de conduction thermique avec deplacement d’un front 
de solidification bi-dimensionnel. L’exemple traite est celui de la solidification a l’inttrieur d’un 
prisme uniforme a section carree rempli d’un liquide initialement a la temperature de fusion. Les 
resultats obtenus quant a la position et a l’evolution dans le temps du front de solidification sont en 

bon accord avec ceux trouves par Allen et Severn [l] en utilisant la methode de relaxation. 

Zusammenfassung-Das Problem der Warmeleitung in einer fortschreitenden, zweidimensionalen 
Verfestigungsfront wird mit Hilfe angenaherter Integralmethoden der hydrodynamischen Grenz- 
schichttheorie untersucht. Als Beispiel dient die von aussen nach innen fortschreitende Verfestigung 
in einem Wiirfel, der anfanglich mit Fliissigkeit von Schmelztemperatur gefiillt war. Die Ergebnisse 
fur die Ort- und Zeitabhlngigkeit der Front sind in guter ~bereinstimmung mit jenen, die Allen und 

Severn [I] nach der Relaxationsmethode gefunden haben. 

~EHOTa~~Jr-j&i,fi peIIIeH&IFI :ZlsaYLI TeII~~OIIpOBO~HOCTIl Ilpl4 ~BIWieHIWl II:IOCliOI‘O @pOHTtl 

OTBepAeBaHnR HCIIOJlb3OBaHbI IIpZi6JImK@HHbIe IlHTWpaJlbHbIe MeTOAbITeOp~IM IIOrpaHHYHOrO 

CaOH,O6bIYHbIe B AMHaMHKe iffHAKOCTefi. P3CCVaTpI4BaeTCH IIpHMep BHyTpeHHeI.0 OTBepJJeBEl- 

WBR 0AH0p0~~08 11p113mI,mfe101ueZt IisanpaTHoe nonepeYHoe ceYeHLie51:lanomeHHoZi mfAI<o- 

cTb~,Haxo~~~e~c~B~aYa~enp~Te~nepaTypenna~~leH~cI.PeaynbTaTI,Ino~~~~eH~~(Pp0~T~ 

XOpOUlO CO~aacyIoTcn C AaHHbIMH AnneHa EI CeBepHa [~],~O:I~Y~HH~IMHBMR~~I~ IlpHMeHeHEIIf 

MeToga penama4m. 


